Definition of transformer losses
Transformer losses can be divided into two main components: no-load losses and load losses. These types of losses are common to all types of transformers, regardless of transformer application or power rating.
There are, however, two other types of losses; extra losses created by harmonics and losses which may apply particularly to larger transformers – cooling or auxiliary losses, caused by the use of cooling equipment like fans and pumps.
No-Load losses
These losses occur in the transformer core whenever the transformer is energised (even when the secondary circuit is open). They are also called iron losses or core losses and are constant.
They are composed of:
Hysteresis losses
Caused by the frictional movement of magnetic domains in the core laminations being magnetized and demagnetized by alternation of the magnetic field. These losses depend on thetype of material used to build a core.
Silicon steel has much lower hysteresis than normal steel but amorphous metal has much better performance than silicon steel. Nowadays hysteresis losses can be reduced by material processing such as cold rolling, laser treatment or grain orientation.
Hysteresis losses are usually responsible for more than a half of total no-load losses (~50% to ~70%).
This ratio was smaller in the past (due to the higher contribution of eddy current losses particularly in relatively thick and not laser treated sheets).
Eddy current losses
Caused by varying magnetic fields inducing eddy currents in the laminations and thus generating heat.
These losses can be reduced by building the core from thin laminated sheets insulated from each other by a thin varnish layer to reduce eddy currents. Eddy current losses nowadays usually account for 30% to 50% of total no-load losses. When assessing efforts in improving distribution transformer efficiency, the biggest progress has been achieved in reduction of these losses.
There are also marginal stray and dielectric losses which occur in the transformer core, accounting usually for no more than 1% of total no-load losses.
Load losses
These losses are commonly called copper losses or short circuit losses. Load losses vary according to the transformer loading.
They are composed of:
Ohmic heat loss
Sometimes referred to as copper loss, since this resistive component of load loss dominates. This loss occurs in transformer windings and is caused by the resistance of the conductor.
The magnitude of these losses increases with the square of the load current and is proportional to the resistance of the winding. It can be reduced by increasing the cross sectional area of conductor or by reducing the winding length. Using copper as the conductor maintains the balance between weight, size, cost and resistance; adding an additional amount to increase conductor diameter, consistent with other design constraints, reduces losses.
Conductor eddy current losses.
Eddy currents, due to magnetic fields caused by alternating current, also occur in the windings. Reducing the cross-section of the conductor reduces eddy currents, so stranded conductors are used to achieve the required low resistance while controlling eddy current loss.
This is avoided by the use of continuously transposed conductor (CTC), in which the strands are frequently transposed to average the flux differences and equalise the voltage.
Auxiliary losses
These losses are caused by using energy to run cooling fans or pumps which help to cool larger transformers.
Clearly, this area is comprised with different sorts of windings. For instance, sectional and trapezoidal winding, layer stops, spreading, carrying off and starting with the customized procedure are open. The CNC control can be sure workplace that empowers an energetic setting up of winding ventures.Magnet Wire
ReplyDeleteThe primary properties of utilizing these wires, that make Enameled Aluminum Wire and Enameled copper wire charming for wide applications are the thin enameling security. Transformers, motors and generators are altogether machines in light of the twist, which is a gadget that produces alluring fields and electrical streams using gigantic circles of wire.Inductor Winding
ReplyDelete